Hàm Số Liên Tục Và Các Dạng Bài Tập Từ Cơ Bản Đến Nâng Cao

1. Hàm số liên tục là gì?

Hàm số y = f(x) gọi là hàm số liên tục trên khoảng nếu hàm số đó liên tục tại mọi điểm thuộc khoảng đó. Cụ thể hơn, ta có định nghĩa khái quát chung như sau:Cho hàm số y = f(x) xác định trên $K,x_{0}in K$. Khi đó, y = f(x) liên tục tại $x_{0}$ khi $underset{xrightarrow x_{0}}{lim} f(x)=f(x_{0})$.Đồ thị hàm số liên tục có dạng:

Đọc thêm

2. Hàm số liên tục tại 1 điểm

Cho hàm số y = f(x) xác định trên (a;b) và $x_{0} epsilon (a;b)$. Hàm số y được gọi là hàm số liên tục tại 1 điểm $x_{0}$ khi $underset{xrightarrow x_{0}}{lim}f(x)=f(x_{0})$.Ngược lại, nếu hàm số $f(x_{0})$ không liên tục tại $x_{0}$ thì khi đó $x_{0}$ gọi là điểm gián đoạn của f(x).Nâng cao hơn, nếu ta có 2 hàm số y = f(x) và y = g(x) cùng liên tục tại điểm $x_{0}$. Khi đó:

Đọc thêm

3. Hàm số liên tục trên một khoảng

Nếu hàm số y = f(x) liên tục trên một khoảng (a;b) thì khi đó hàm số f(x) sẽ liên tục tại mọi điểm thuộc (a;b). Đồ thị hàm liên tục trên khoảng (a;b) được biểu diễn bằng một đường nét liền, không bị đứt gãy.Các hàm số căn thức, phân thức, hàm số lượng giác đều liên tục trên từng khoảng xác định của chúng.Ngoài ra, nếu đồ thị hàm số y = f(x) liên tục trên khoảng (a; b) và thỏa mãn $ underset{xrightarrow a^{+}}{lim}f(x)=f(a); underset{xrightarrow b^{-}}{lim}f(x)=f(b)$ thì đồ thị y = f(x) liên tục trên đoạn [a;b].

Đọc thêm

4. Hàm số liên tục trên r

Hàm liên tục trên R là trường hợp đặc biệt của hàm số liên tục trên một khoảng.Đối với một số hàm đa thức thì sẽ liên tục trên tập R mà không cần chứng minh, bao gồm: hàm lượng giác y = sinx, y = cosx, hàm đa thức, hàm phân thức có tập xác định R, hàm mũ.Tham khảo ngay tài liệu tổng hợp kiến thức và phương pháp giải mọi dạng bài tập độc quyền của VUIHOC ngay

Đọc thêm

5. Một số định lý cơ bản về hàm số liên tục

Để áp dụng giải các bài tập liên quan đến hàm số liên tục, ngoài định nghĩa các loại hàm số liên tục, học sinh cần nắm chắc 3 định lý cơ bản sau đây:Định lý 1: Định lý 2: Cho hàm số y = f(x) và y = g(x) là hai hàm số liên tục tại $x_{0}$. Ta có:Định lý 3: Cho hàm số y = f(x) liên tục trên [a;b] và thỏa mãn f(a) . f(b) < 0. Tồn tại ít nhất 1 điểm c thuộc đoạn (a;b) thỏa mãn f(c) = 0. Định lý này thường dùng để chứng minh sự tồn tại nghiệm của phương trình trên khoảng nhất định.Định lý 3 còn có một dạng khác như sau:Cho hàm số y = f(x) liên tục trên [a;b] và thỏa mãn f(a) . f(b) < 0. Phương trình f(x) = 0 sẽ có ít nhất 1 nghiệm trong khoảng (a;b).

Đọc thêm

6. Các dạng bài tập về hàm số liên tục và ví dụ cụ thể

Đọc thêm

6.1. Dạng 1: Xét tính liên tục của hàm số tại một điểm

Đây là dạng bài thường gặp trong chuyên đề hàm số liên tục. Để xét tính liên tục của hàm số tại 1 điểm, ta tiến hành theo các bước sau:Bước 1: Tính giá trị $f(x_{0})$Bước 2: Tính giá trị $underset{xrightarrow x_{0}}{lim}f(x)$ hoặc $underset{xrightarrow x_{0}^{+}}{lim}f...

Đọc thêm

6.2. Dạng 2: Xét tính liên tục, chứng minh hàm số liên tục trên một khoảng đoạn hoặc tập xác định

Đối với dạng bài tập này, học sinh cần áp dụng phối hợp 2 định lý 1 và 2 để xét tính liên tục của hàm số đề bài trên từng khoảng xác định của nó. Nếu hàm số đã cho xác định, các em học sinh tiếp tục xét tính liên tục tại các điểm đặc biệt của hàm số đó.Ví dụ 1: Chứng minh hàm số sau đây liên tục trên khoảng (-7;+)$f(x)=left{begin{matrix} x^{2} - x + 4, x geq 2 frac{x - 2}{sqrt{x + 7 - 3}}, -7 < x < 2 end{matrix}right.$Giải:Ví dụ 2: Tìm giá trị a, b sao cho hàm số sau liên tục:$left{begin{matrix} 1, x < 3 ax + b, 3 leq x leq 5 3, x > 5 end{matrix}right.$Giải:

Đọc thêm

6.3. Dạng 3: Tìm điều kiện hàm số liên tục tại 1 điểm

Đây là dạng toán “tìm m” rất phổ biến trong các đề luyện thi và các đề kiểm tra trong chương trình học phổ thông. Phương pháp giải dạng toán này gồm có 3 bước:Bước 1: Tìm điểm xác định $x_{0}$ của hàm số đề bài. Tính giá trị f(m) với $m = x_{0}$Bước 2: Tính giới hạn...

Đọc thêm

6.4. Dạng 4: Tìm điều kiện để hàm số liên tục trên một khoảng đoạn hoặc tập xác định

Đối với các bài toán tìm điều kiện để hàm số liên tục trên một đoạn hoặc một tập xác định bất kỳ, học sinh làm tương tự dạng 3. Điểm khác biệt duy nhất là ở dạng 3 ta tìm điểm làm hàm số xác định, còn với dạng này ta tìm khoảng đoạn hoặc tập làm cho h...

Đọc thêm

6.5. Dạng 5: Ứng dụng tính liên tục của hàm số để chứng minh phương trình có nghiệm

Ta cùng xét các ví dụ sau đây để hiểu về cách ứng dụng tính liên tục của hàm số chứng minh phương trình có nghiệm:Ví dụ 1: Chứng minh rằng phương trình $3x^{3} + 2x - 2 = 0$ có nghiệm trong (0; 1).Giải:Hàm số đề bài là hàm đa thức, cho nên f(x) liên tục t...

Đọc thêm

6.6. Dạng 6: Sử dụng tính liên tục để xét dấu hàm số

Khi xét dấu hàm số có áp dụng tính liên tục của hàm số, học sinh cần sử dụng kết quả: “Nếu hàm số y = f(x) là hàm liên tục và không triệt tiêu trên [a;b] thì khi đó có dấu nhất định trên (a;b)”Xét các ví dụ sau:Ví dụ: Xét dấu của hàm số sau: $f(x)= sqrt{x+4} - sqrt{1-x} - sqrt{1-2x}$Giải:

Đọc thêm

7. Một số bài tập về hàm số liên tục từ cơ bản đến nâng cao và phương pháp giải

Để thành thạo các dạng bài tập hàm số liên tục, các em học sinh cùng vuihoc giải các bài tập luyện tập sau đây!Bài 1: Xét tính liên tục của hàm số sau tại điểm x = 0Giải:Hàm số đề bài xác định tại x = 0 và f(0) = 2Xét giới hạn trái tại điểm x = 0:$under...

Đọc thêm

Bạn đã thích câu chuyện này ?

Hãy chia sẻ bằng cách nhấn vào nút bên trên

Truy cập trang web của chúng tôi và xem tất cả các bài viết khác!

unie